Machine Learning for Advanced Electromyographic Prosthesis Control
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Abstract— We present our work on performing robust si-
multaneous proportional electromyographic control of a hand
prosthesis with multiple degrees of freedom. Our approach is
based on state-of-the-art machine learning using a sophisticated
neural network. On an offline dataset, we achieve a reduction
of the Mean Squared Error by almost 40%, online tests with
prosthesis wearers are currently in progress.

I. INTRODUCTION

Surface electromyographic (SEMG) signals have been
considered for control of hand prostheses for decades (see
e.g. [1]), and it has been shown that these signals allow to
distinguish a large number of different movements for both
able-bodied persons and amputees [2]. Yet, the vast majority
of hand prostheses which are in practical use are much less
versatile than laboratory results suggest to be possible, in
particular, simultaneous and proportional control of multiple
degrees of freedom (DOF) is typically impossible [3]. This
goes along with the observation that commercially available
prostheses mostly use rather simple algorithms for sSEMG-
based prosthesis control, e.g. a small number of sEMG
channels is recorded, and signal energy thresholding is used
to control a small number of functions.

We present our ongoing research on creating a robust
and efficient system for real-time simultaneous control of
a prosthesis with 4 DOF. We use a state-of-the-art neural
network (see sections Il and III) to directly perform simulta-
neous regression of up to seven movement commands (which
translate to up to 4 DOF) without explicitly modelling the
properties of the EMG signal. Here we report results using an
offline system based on pre-recorded data. An online system
is currently being tested on patients, see section IV.

II. MACHINE LEARNING & NEURAL NETWORKS

Machine Learning (ML) deals with automatically solving
certain tasks without being given explicit rules describing
the problem. Instead, the system learns from examples: In
the training stage, the system receives samples of the given
task and the desired solution as input; for evaluation, or
for practical application, the trained system is then fested
on unseen samples. For example, modern computer vision
systems can distinguish hundreds to thousands of image
categories [4] without any explicit description on what makes
up a certain object: the system learns the correspondence
between images and class labels solely from examples.
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Fig. 1: Fitting straight lines to
training data to solve a classi-
fication task (source: [5])

Fig. 2: Schematic diagram of
a feedforward neural network

The ML system can be described as a function from
the (vector) space of input samples into the output space,
likewise represented as a vector space. This allows training
algorithms based on fitting a function to the available data,
like in figure 1. In contrast to naive approaches which
directly use the input samples, the fitted function can be
evaluated efficiently, possibly meeting real-time application
constraints, and (if suitably set up) it generalizes well, i.e. it
works well on unseen data.

Among the variety of machine learning algorithms (see
e.g. [5]), Neural Networks have recently gained huge popu-
larity for many tasks, including biomedical signal processing.
Neural networks perform a distributed computation of the
mapping from input data to output hypothesis, using a
large number of small units (called neurons). Each neuron
is very simple, it just performs a weighted summation of
its input data followed by a nonlinear transformation. The
computational power of neural networks lies in the weight-
ing of the connections between neurons; these connection
weights are optimized during the training stage using the
backpropagation algorithm [6]. The neurons are commonly
organized in layers, as shown in figure 2.

ITII. SYSTEM, EXPERIMENTS & RESULTS

Data corpus The offline system is based on a dataset
of 8-channel sSEMG recordings of 11 able-bodied subjects
performing seven common movements which are used in
prosthesis control: Wrist Flexion/Extension, Wrist Prona-
tion/Supination, Key Grip/Fine Pinch/Hand Open, plus a
No Movement baseline. With a proportional control task in
mind, these movements were performed in three different
target strengths, namely at 30%, 60%, and 90% MVC
(maximum voluntary contraction). Each single movement
follows a trapezoid structure (ls increase, 3s hold with
the target MVC, Is decrease) Each subject recorded 15
recording sessions with varying electrode positions; each
single recording session consists of 5 repetitions of the entire
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Fig. 3: Histograms of regression results for two complementary classes (subject 1, best neural network). Note that the histograms for 0%MVC also show

values for all other movements

set of movements and strengths, i.e. of 5 x 8 x 3 = 120
recordings. The total amount of data per subject is thus
1800 recordings (around 2.5h). The raw EMG data were
preprocessed using the standard Hudgins features [7]. For
increased exactness, we cut the movement onset and offset of
each sample and retained only the part where the subject held
the target MVC. Experiments were run subject-dependently.
From each subject, 10 sessions were chosen for training the
regression system, and the remaining 5 sessions were chosen
for testing: thus the electrode positioning between recordings
varies slightly, which reflects the intended practical usage.

Systems Many current systems for proportional prosthesis
control use some sort of linear control scheme, either linear
regressor, or a linear classifier (e.g. LDA [8]) combined with
a separate estimator for the desired movement speed. In light
of this, we use linear regression as our baseline, which is
compared with a neural network with the following param-
eters: The network has two 100-dimensional hidden layers
with a tanh nonlinearity, followed by the seven-dimensional
linear output layer (corresponding to the possible move-
ments). The output Mean Squared Error (averaged over all
seven movements) is optimized using backpropagation with
early stopping.

System MSE  Correlation
Linear Regression  0.033 0.59
Neural Network 0.020 0.74

TABLE I: Mean Squared Error (MSE) and correlation between target and
hypothesis for baseline linear regressor and neural network, on the test data

Results Table I shows the results of our experiments on the
test data subset, averaged over all seven movements and all
subjects. It is clear that the neural network is substantially
better: The reduction of the mean squared error is almost
40% relative. We also computed the correlation between ref-
erence target and regressor hypothesis, as a means to quantify
the most important parameter for practically controlling a
prosthesis, again obtaining an improvement. Finally, figure 3
graphically shows the results of our regressor for a subset of
two complementary movements, as a histogram depicting the
target MVC (in columns) and the hypothesis, i.e. the output
of our system. One sees that the movements are practically
always correctly recognized, and that the target strength is
quite well estimated. Note that the leftmost column shows
the regression output for all other movements, indicating that
there are few “false positives” (and that these can easily be

removed with thresholding).

IV. CONCLUSION AND ONGOING WORK

We have reported first results on our ongoing work about
state-of-the-art prosthesis control. Our current research deals
with using these results in a challenging online scenario, in
particular, in real-life situations with actual prosthesis users.
For this purpose, we have developed an online system with
the same set of movements and the same training procedure
as the offline system. This system is currently undergoing
first clinical tests, differences to the offline system described
above include the translation of regressor results into move-
ment commands, using versatile postprocessing for improved
control. We note in particular that the training data (single
muscle contractions) has very different properties from the
data accrued in the test situation (real-life movements), a
discrepancy which is well-known [9]. In the future, we
expect that our neural network paradigm allows an improved
training procedure which is closer to the intended usage.
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