DELIVERABLE REPORT

Project acronym: INPUT
Project number: 687795

Deliverable D3.1, Template for interface definitions
Dissemination type: R — report

Dissemination level: PU

Planned delivery date: 2016-07-31

Actual delivery date: 2016-07-26

Reporting Period: 1

WHP3, Task 3.2, Unified interface descriptions
Lead: OBHP

Disclaimer: Company or product names mentioned in this document may be trademarks or registered
trademarks of their respective companies.

All rights reserved.

The document is proprietary of the INPUT consortium members. No copying or distributing, in any
form or by any means, is allowed without the prior written agreement of the owner of the property
rights.

This document reflects only the authors’ view. The European Community is not liable for any use that
may be made of the information contained herein.

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No. 687795

26.07.2016 07:34:00 1/14

1 DESCRIPTION OF THE TASK

In order to allow for successful interplay of all elements developed within this project, project
internally standardized interfaces for hardware and software have to be defined and enforced. The
enabling subtasks of OBHP are:
e To provide discussion platforms and data sheet repositories for interface agreement,
documentation and consultation
e To motivate and monitor adherence to the agreed interfaces from the earliest stage on of the
project
Together with all project partners, OBHP will mediate the definition of:
o interfaces between data acquisition and signal processing packages
o interfaces between signal processing packages and prosthetic hardware

2 DESCRIPTION OF DELIVERABLE

This deliverable will define the following interfaces:

o interfaces between data acquisition and signal processing packages
o interfaces between signal processing packages and prosthetic hardware

These definitions will be crucial for successful interplay of all components.

3 IMPLEMENTATION & RESULT

The following interface templates provide the basis of what needs to be defined when a new interface
is created. These guidelines will be adhered to within the project to unify interface descriptions.

3.1 TEMPLATE FOR INTERFACING DATA ACQUISITION WITH SIGNAL PROCESSING
PACKAGES

3.1.1 PREREQUISITES

This deliverable provides a template for the data transmission of signals used in INPUT. The
prerequisites for the application of this template is therefore the readily acquisitioned raw signals. This
comprises:

e Analogue signal preprocessing (amplification, filtering, rectification,...)
e Data sampling by a control unit (microcontroller, DSP,...)

3.1.2 INTERFACE DESCRIPTION
An interface description regarding the transmission of data from an acquisition source to a signal
processing unit has to detail the following interface descriptions:

26.07.2016 07:34:00 2/14

Table 1: Interface features to be described

Feature to be described

Example

Physical transmission medium

Bluetooth, WiFi, (virtual) serial port, USB, UPD
port

Native sampling frequency

1 kHz, 1.8kHz, 9kHz,...

Transmission frequency

Baudrate, kB/s,

Transmission protocol

Event based, interrupt based, polling based

Data format

uintl6, float, double

Conversion factors

to mVolts on skin, to degrees, to Newtons,...

Data endianess little endian, big endian

[length, ID1, ID2, ID3, payload, payload, payload,

Order of data transmission per frame
checksum]

Calculation of length, calculation of checksum

Calculation of safety checks (any/all safety checks are optional)

Number and order of information in payload 8 EMG, 3 IMU, 3 force sensors, ...
Available commands Start of transmission IDs, payloads, return values
Stop of transmission IDs, payloads, return values

Configuration
parameters

Sampling frequency, Amplification,...

3.1.3 PROPRIETARY INTERFACES

In case that the used physical data transmission underlies a proprietary protocol, the owner of this
protocol has to provide the partners with an abstraction layer, which handles the communication in the
background and provides the signals in a non-proprietary manner, which then has to be described with
the same definitions as described in Section 3.1.2.

3.1.4 EXEMPLARY INTERFACE DESCRIPTION OF OBHP EMG SIGNAL INTERFACE:

UDP SOCKET
The data transfer protocol of Otto Bock prostheses is proprietary and therefore an abstraction layer is
offered to send and receive data to and from the prostheses controller. The abstraction layer is
implemented as .NET DLL package, which can be directly integrated .NET frameworks. It further
comes with a standalone application GUI, which handles data communication and exposes the
communication interface via a UDP socket. It can therefore be accessed by any type of program
capable of reading and writing from/to UDP sockets (Matlab, C/C++, Python, etc.).

Via this connection, data can be streamed from an Ottobock Michelangelo prosthesis to a host
program (signal processing unit).

Installation

[T

It should be checked that the system number format is set to use the “.”’- as a decimal point; and not ,
(otherwise the calibration files will fail to load). This can be checked easily by going to the “Control

26.07.2016 07:34:00 3/14

Panel” and then to
shown in Figure 1.

ol Panel -
C Region
Fomais Locesos Admnstralis
Format
Eraglich (Urited Statss)
wl User Accounts and Family Safety
) W Change account ¢
B W Sat up Fanly Sadety for any s Ciwrte and tirme formets
Appearance and Personalization Shert dabe: F¥yy MM od
h . . Lesng dutat dddd, MMM d, yypy
Ay Shert tir HHmm
A Clack, Language, and Region Ly tirve HHmim s
! Add 3 language

Exzmples
Short dabe:

Leng dais:
Short time

Listig b

Fiest elay of wis:

Sunday

2073-09-06

Sunday, Sentamber 6, 20

e
13509

“Change date, time or number formats” and then under Additional Settings

k) Customize Format

Humber: Currency Time Darie

Esampla

Positive: 123,455, 783.00

Dreornal symbol:

Fa. of cigits aftar decimat
Digit grouging symbxod:
Digit gresiping

hlsgstiom sign mombak
Megatiee number format
Cisplay leading zeros:

Lisk saparator

Standard digits:

Use native digris:

Hegative: - 123455,789.00

123,456, TES

s,
0133436700

Hever

as

Additional settings

Click Reset to restore the system default sethrgs for Baset
.

Aumksers, curmeney, time, and dat

o Zanes :
o o Coancal

Figure 1: Checking the System Number Format

Operation modes and prosthesis types

Prosthesis description: Gripper + Wrist Unit: This prosthesis permits grasping using Palmar (or Fine
Pinch) and Lateral (or Key Grip) grasp. It has a wrist unit with 2 full degrees of freedom with which
the hand can perform Pronation, Supination, Flexion and Extension.

1. There are two different types of USB Bluetooth dongles available, namely, FAST (BaudRate:
460800) and SLOW (BaudRate: 115200). In INPUT, only the 460800 version is used. Further,
the prosthetic hands are fitted with controllers that support transmission at either 100 Hz or
1000 Hz. In INPUT, only the 1000Hz version is used. The SLOW-Dongle can only connect
with the 100Hz-Controller. The FAST-Dongle can connect with both the 100Hz and 1000Hz-

Controller.

2. Internal Controller: The controller connected with the prosthesis supports the standard state-
of-the-art (SoA) control as programmed by the therapist via the OttoBock AxonSoft software
package. This mode may be used when the SoA control algorithm is needed for comparative
measurements. This mode is activated by checking the “Use the internal controller” checkbox
on the GUI, before pressing the Connect button.

26.07.2016 07:34:00

[Use the internal controller

4/14

In this mode, the prosthesis will not respond to commands sent from the GUI or UDP connection.
However, at 100 Hz the sensor data can be logged from the prosthesis (e.g. sensor data, EMG data or
controller-state).

Connecting to the prosthesis
1. Turn ON the prosthesis with Bluetooth enabled:

Press the button on the prosthesis for about 5 seconds. First "...beep, beep...“, then after a pause two
more signals (like: "...beep, beeep,..."). The LED will be continuously blue. A very short press
indicates the battery state, a slightly longer press will turn the controller off.

2. Open the GUI:

Start the application GUI "MichelangeloGUIl.exe (Figure 2). To connect with the prosthesis, follow
the steps below:

[R’
Michelingelo Communication [nterisce | (S

= () ()

i Dales and senser values

MG da
Connoct - Ch1 1] [EMGdas]
& Fasl Dongle Cha pilh]
: gibd

P —— i)
. : 8 RilE]
CHE RilE]

i Siop Dumg R P—— Ch7 it
{C] Che g
Samplebir

vy hand penmor dats
Main ciive S | Sermer Dt
Thosmbs deve full]
G toron el
Rat. arghe)
Lise the intemal contrallar Fles: anghe _'ﬂgi

Frosthesiz Conlrod

Fryscal hand postons:

Hand prashags Bool] | Pryscal Data |
Hiand speadurs [5]
Wiirist rotation [=5]
Te—— Frrepsesl vy Whiriat flesson [2%]
Grp foroe [4]

Controler siates
—— Chi nom fu1E] ETTIT T
" LIS Chi2 ngem 1B}
Machire S ateus]

Figure 2: The view of the GUI when started

a. Connect the Bluetooth Dongle to your computer. Check the ‘Fast Dongle’
RadioButton.

b. Then press the “Connect” button and wait until the program connects to the
Prosthesis. The text of the “Connect” button will change to “Disconnect” and
hereafter the same button shall be used to disconnect the prosthesis from the program
when finished.

26.07.2016 07:34:00 5/14

c. The panel on the left hand side in Figure 2, marked as (c), can be used to send
‘velocity commands’ to the prosthesis. You can control the velocity (or speed) of any
motor using the slider “Motor speed” (represented via the box (d)).

Now the prosthesis can be moved by clicking buttons. For example, if the Motor Speed slider is set to
20% and the Pronation button is pressed, then the prosthesis will start pronating with 20% of the
maximum motor speed. To stop pronating, click on the ‘STOP’ button.

3. Loading the Calibration File:

The prosthesis sends sensor data to the GUI, but this sensor data is ‘raw’. The calibration file
is used to convert raw sensor data to human readable normalized sensor data (Table 1,
Conversion factors). To load the calibration file click on the “Load *xml file” (see Figure 3).
Under the file path .../ MichaelAngeloHand/Calibration/..., you will find four Calibration
files. Select the appropriate file name based on the prosthesis you have and click Open. In case
that you don’t care for the position control or sensor data (e.g., you just want to read the EMG,
or to use velocity control, use the defaultCalibration.xml)

p——
[P Py -

b

e Twn ol v v

et Dy By o Dt L

.......

Figure 3: Loading the Calibration File

4. Configure the DUMP Mode:

Under the Connect/Disconnect button, there is a drop-down menu labeled “Dump Mode”. There are
two dump modes available as shown in Figure 4. Choose the (1KHz) EMG mode. This dump mode
will transmit EMG data only at a rate of 1kHz. This mode is useful when one needs to process raw
EMG signals. In this dump mode only velocity control of the prosthesis is possible (which represents
the case of conventional prosthetic control).

a. To start the dump, select the required dump mode and click “Start Dump”.

26.07.2016 07:34:00 6/14

Connection controls

Slow Dongle

Disconnect i
@ Fast Dongle

Dump mode: |[QMEsFISNCERETRENE |-

100 Hz) EMG + Sensors

Sttt Dump[-l Kl-iz} I[_MGM i |

Figure 4: Dump Modes

Interfacing with the prosthesis from an external program

The biggest advantage of this interface is that it allows controlling and reading the data from the
prosthesis via a UDP port opened in an external program (e.g. Matlab, C/C++, Python, etc.). To
establish a UDP connection from an external program, proceed as follows:

a. In the “External comm settings” group-box enter the (IP address, Port) at which you
would like to send commands from your external code. As shown in Figure 5, the
default IP and listening UDP port are set to 127.0.01 and 8051; it is
advisible/convenient to directly use these settings.

b. Click on the “Start Communication” button, to control the hand from your external
program (written in Matlab, C/C++, Python, etc.). Movement commands can be sent
to the hand as well as EMG and sensor data can be read in.

Exdemal comm settings

Remote Address and Port

127.0.01 2051

Start Communication

Figure 5: External Communication Settings.

If EMG data should be transmitted from the prosthesis (or sensor data for experimental reasons, e.g.,
grasping force, hand position), click on the “Start Dump” button. The interface will send the data on
port 127.0.0.1/8052 (i.e. your program should listen for sensor data UDP packets at port 8052).
Generalized, the sending port of the GUI (the one the host application should listen to) is always +1 of
the listening port of the GUI (the sending port of your application)

26.07.2016 07:34:00 7114

UDP

Custom App Ottobock GUI

Move commands
Port# | ——— | Port#

Port# +1| <—— | Port# +1
EMG, sensors

Figure 6: Port allocation for sending and receiving data from the Ottobock GUI to a custom application, such as a
signal processing unit

The Packet Coding Scheme:
1. For the Receiver

a. For the Dump mode (1kHz) EMG data: we get 18 bytes in a single UDP packet. This
mode should be used in INPUT.

i. byte0 and bytel = 1% channel of EMG to convert in Uint16, range [0, 856]

ii. byte2 and byte3 = 2™ channel of EMG to convert in Uint16, range [0, 856]

iii. bytel4 and bytel5 = 8" channel of EMG to convert in Uint16, range [0, 856]

iv. bytel6 = Counter

For sake of completeness also the other receiver mode is described here: (available but not to be used
in INPUT)

b. For the dump mode (100Hz) Sensor + EMG Data: we get 35bytes is a UDP packet.
____rawsensordata
i. byteO = Main Drive in Uint8, range [0, 255]
ii. bytel =Thumb Drive in Uint8, range [0, 255]
iii. byte2 = Rotation Angle in Uint8, range [0, 255]
iv. byte3 =Flexion Angle in Uint8, range [0, 255]
v. byted = Force in Uint8, range [0, 255]
_____normalized sensor data (human readable)
vi. byte5= Grasp Type in Int8, O for palmar and 1 for lateral
vii. byte6 = Aperture in Int8, range [-100, 100]
viii. byte7 = Pronation/Supination in Int8, range [-100, 100]

ix. byte8 = Flexion/Extension in Int8, range [-100, 100]
26.07.2016 07:34:00 8/14

x. byte9 = Force in Int8, range [-100, 100]

Controller State, when in Co-Contraction Mode

xi. bytel0 and bytell = First Control Channel in Uintl6, range [0, 856]

xii. bytel2 and bytel3 = Second Control Channel in Uint16, range [0,856]; These

last two are normalized EMG

xiii. byteld and bytel5 = Machine State in Uint16

Raw EMG data

xiv. bytel6 and byte17 = 1* channel of EMG to convert in Uint16, range [0, 856]

xv. byte18and bytel9 = 2" channel of EMG to convert in Uint16, range [0, 856]

xxi. byte30 and byte31 = 8" channel of EMG to convert in Uint16, range [0, 856]

Overhead for data management

xx1ii. byte32 and byte33 =two counters

xxiii. byte34 = Boolean which says if the hand has reached the command position

Table 2: Interface description table for Ottobock GUI

Feature

Value

Physical transmission medium

Bluetooth (proprietary), then UPD port

Native sampling frequency

1 kHz

Transmission frequency

UDP packaging

Transmission protocol

Polling based

Data format

double

Conversion factors

Provided in config files

Data endianess Big endian
Order of data transmission per frame See above
Calculation of safety checks none

Number and order of information in payload

8 EMG (chanl to chan8)

Parameters Return values

Available commands | GUI buttons

See above See above

26.07.2016 07:34:00

9/14

3.2 TEMPLATE FOR INTERFACING SIGNAL PROCESSING PACKAGES WITH
PROSTHETIC HARDWARE

3.2.1 PREREQUISITES
This section describes how a custom application can interface with a physical prosthesis to control it.
The prerequisites for this template to be applicable are therefore:

e An application (signal processing unit) exists which has already computed the instantaneous
movement commands for the prosthesis
e A prosthesis is connected to the host of the processing unit

3.2.2 INTERFACE DESCRIPTION
An interface description regarding the control commands of an application to control a has to detail the
following interface descriptions:

Table 3: Interface features to be described

Feature to be described Example

Physical transmission medium Bluetooth, WiFi, (virtual) serial port, USB, UPD

port
Frequency of control signals sent Fixed rate, only on change of values
Data format uintl6, float, double
Conversion factors Angular speed, motor torque, degrees, Newtons,. ..
Data endianess little endian, big endian

[length, ID1, 1D2, ID3, payload, payload, payload,

Order of data transmission per frame
checksum]

Calculation of length, calculation of checksum

Calculation of safety checks (any/all safety checks are optional)

Number and order of information in payload Motor 1, Motor 2,...
Available commands Start of transmission IDs, payloads, return values
Stop of transmission IDs, payloads, return values

Configuration

parameters Speeds, stop values, ...

3.2.3 PROPRIETARY INTERFACES
In case that the used physical data transmission underlies a proprietary protocol, the owner of this
protocol has to provide the partners with an abstraction layer, which handles the communication in the

26.07.2016 07:34:00 10/14

background and provides the signals in a non-proprietary manner, which then has to be described with
the same definitions as described in Section 3.2.2.

3.2.4 EXEMPLARY INTERFACE DESCRIPTION OF OBHP INTERFACE TO CONTROL

PROSTHESIS

The interface described above in Section 3.1.4 also allows to control the OttoBock Michelangelo hand
via the standard UDP connection. UDP is a very simple networking protocol that allows transmission
of data packets (in this context, commands to/from the hand) between two applications, either, on
same or different PCs. The Michelangelo hand can perform different movements like Grasping (either
with Lateral or Palmar grasp), Wrist Rotation (both Pronation and Supination) and Wrist
Flexion/Extension. To accomplish these movements, the prosthesis has different on-board motors,
which move the motor-shaft/actuator to the commanded position.

With this interface, the Michelangelo hand can be controlled in two different modes,

e Velocity control: This mode allows controlling the velocity of individual motors i.e.
closing/opening velocity of grasping or rotation velocity for Pronation/Supination.

e Position Control: This mode allows controlling the position of individual motor-shafts i.e.
it allows you to pre-shape a grasp with a specific amount of closure or rotate to a specific
angle w.r.t the neutral position.

The Michelangelo hand also has on-board sensors. With this interface, it is also possible to receive the
sensor data from prosthesis. The interface provides data from the following prosthesis sensors,

e EMG: Up to 8 EMG sensors can be connected to the prosthesis. The interface can stream
EMG data at either 100 Hz or 1000 Hz.

e Force: The grasping force exerted on any grasped object can be measure by using the on-
board force sensor.

e Actuator Position: The rotation and flexion angles w.r.t the neutral position are available
via the interface.

Additionally one more control mode is available, which does not rely on any external software (all
computations are done in prosthesis as in a conventional control case)

e Internal controller states: The states of the embedded prosthesis controller that is used
to drive the prosthesis as programmed by the therapists.*

1. Controlling Position of the Hand (available only if the 100 Hz mode is selected, the Dump is
started and if the option “use internal controller” is not checked):

The position group-box in the GUI is used to control the position of individual motors on the
prosthesis (position group-box of the GUI has been shown in Figure 7). This option allows you to
control either the ‘Sensor vals’ or the ‘Physical vals’. The Physical values are easy to interpret for
humans, as they represent normalized sensor value in range [-100, 100]. In the position group-box,

! Due to software incompatibility, only the default parameters of the prosthesis controller can be used. AxonSoft
cannot be used to modify the control parameters, as would be possible with a regular prosthesis.
26.07.2016 07:34:00 11/14

you can set the grip-type (either Palmar or Lateral), the hand aperture (in range [0, 100]) and the wrist
position as:

o Wrist rotation [£%]; where, a positive position value in range [0, 100] represents
Pronation (clockwise displacement from Q) and a negative value in range [-100,
0] represents Supination (anti-clockwise displacement from 0).

o Wrist flexion [+%]: where, a positive position value in range [0, 100] represents
Extension and a negative value in range [-100, 0] represents Flexion (where, -100
means full flexion of the wrist).

Position
The data is provided in:

Sensor vals @ Physical vals

Hand preshape Palmar -
Hand aparture [%] 50
Wrist rotation [£%2] 60

Wrist flexion [£%] 1]

+| Reduce CPU load (less precision possible)

(G0 to position | | G0 to neutral

Figure 7: Position group-box in the GUI used to control the position of individual prosthesis
motors.

2. For the Sender (i.e. to control the prosthesis via UDP packets):
Three modes are supported as follows,
a. "Velocity Mode": it has 9 unsigned-byte: This mode should be used in INPUT!
i. byte0 = 1: to indicate velocity-control mode
ii. bytel =Palmar Grip Closing command in range [0, 255]
iii. byte2 =Palmar Grip Opening command in range [0, 255]
iv. byte3 = Lateral Grip Closing command in range [0, 255]
v. byted = Lateral Grip Opening command in range [0, 255]
vi. byte5 = Pronation Velocity in range [0, 255]
vii. byte6 = Supination Velocity in range [0, 255]
viii. byte7 =Flexion Velocity in range [0, 255]

ix. byte8 = Extension Velocity in range [0, 255]
26.07.2016 07:34:00 12/14

For sake of completeness also the other 2 modes are described here: (available but not to be used in
INPUT)

b. "Position Control Mode": it has 5 or 8 signed-bytes
i. signed_byte0 = 2: to indicate position-control mode
ii. signed_bytel = Grip Type, O - Palmar, 1 - Lateral
iii. signed byte2 = Grip Closure in range [0, 100]
iv. signed_byte3 = Supination/Pronation, range [-100, 100]
v. signed_byte4 = Flexion/Extension, range [-100, 100]
If there are only 5 bytes, then the speed will be always maximal. Otherwise:
vi. signed_byte5 = Maximum speed of the Grip, range [0, 100]
vii. signed_byte6 = Maximum speed of the Rotation, range [0, 100]

viii. signed_byte7 = Maximum speed of the Flexion, range [0, 100]

€. “Neutral Position”: The hand will come back to the neutral position. It has only one

byte
i. Byte0=0

3.3 SAMPLE IMPLEMENTATION OF THE OTTOBOCK INTERFACE

A sample python script “MHand_Python.py” is available, implementing the host app functionalities
using the Ottobock GUI. This script allows sending triangular/square waves to the prosthesis in both
velocity and position mode. It also receives data back from the prosthesis and plots the results. If you
do not have experience with python, first, install Anaconda with Python 3.5
(www.continuum.io/downloads). After the installation is complete, open Spyder it is a very simply
IDE for Python programming (just like the editor in Matlab or Visual Studio for C/C++). Open the
python script in Spyder and run the program (after appropriately connecting the prosthesis with the
provided interface).

26.07.2016 07:34:00 13/14

http://www.continuum.io/downloads

Feature

Value

Physical transmission medium

UDP, then Bluetooth (proprietary)

Frequency of control signals sent

only on change of values (prosthesis moves with
last command received as long as no other value is
received)

Data format

uintl6

Conversion factors

motor torque

Data endianess

big endian

Order of data transmission per frame

See details above

Calculation of safety checks

none

Number and order of information in payload

See details above

Available commands Ottobock GUI

See details above

4 SUBCONTRACTING

No subcontracting was needed — all work was done by OBHP.

26.07.2016 07:34:00

14/14

